Harvesting of forest biomass for establishment of plantations

Amélie Trottier-Picarda*, Annie DesRochersa, David Paréb, Evelyne Thiffaultb, Christian Messierc, Nelson Thiffaultd

aUniversité du Québec en Abitibi-Témiscamingue; Canadian Forest Service; Université du Québec à Montréal; Ministère des ressources naturelles et de la faune du Québec amelie.trottier-picard@uqat.ca

Rationale

- > Residues from forest harvesting can be used for bioenergy
- > Concern on the long run for tree productivity:
 - Nutrient export > Nutrient supply
- > Other mechanisms are operating such as microclimate and
- > The response of the regeneration depend on soil type, time, and the species regenerating²

Changes in resource limitations with stand development¹

3 research questions tested on a network of experimental sites

How much slash can we harvest?

Hypothesis

Increasing slash loads will have a linear effect on tree productivity

Treatments

What are the drivers of the regeneration response?

Hypothesis

> Microclimate and competition will be the main drivers of tree growth for the first 2 growing seasons

Treatments

How differently will species react within a site?

Hypothesis

> The ruderal hybrid poplar will be more sensitive to slash removal than the tolerant black spruce

Species planted

Network of experimental sites

- > Treatments applied locally (9m²)
- > 7-16 replicates per combination
- > 3 site preparations

Quebec Ontario Mounding

Measurements

- Environment
 - Microclimate: in situ soil temperature and moisture
 - · Competition: visual estimate of vegetation coverage
 - Soil chemistry: mixed-bed ion exchange resin

- Physiological response
 - Water stress: pressure chamber and δ¹³C of annual growth
 - Nutrition: nutrient concentration in foliage, nutrient content, and foliage mass
- · Growth: annual height and diameter growth

Literature cited

- ¹ Fleming, R. L., D. M. Morris, and P. W. Hazlett. In press. Assessing temporal response to forest floor removal: Evolving constraints on initial stand development. Forest Science.
- ² Proe, M. F., J. Craig, J. Dutch, et J. Griffiths. 1999. Use of vector analysis to determine the effects of harvest residues on early growth of second-rotation Sitka spruce. Forest Ecology and Management 122:87-105

Acknowledgements

Map and photographs by Jacques Morissette. This would have been impossible wihout the invaluable input and field work of Jacques Morissette, Sébastien Dagnault, and Line Blackburn. Financial support: FQRNT through Program on GHG, NRCan, Réseau ligniculture Québec, industrial collaborators (Domtar, Louisana-Pacific, Norampac, Tembec)

