

Short-term responses of beetle assemblages to wildfire in a region with more than 100 years of fire suppression

Therese Johansson, Jon Andersson, Frauke Ecke, Joakim Hjältén, Mats Dynesius

Background

- Sweden: intensive management for timber (95 % of productive forest land)
- Fire suppression from late 1800s
- Few and small natural fires, wood harvested
- Pyrophilous species threatened
- Increased interest in conservation
- Prescribed burnings
- Large fire -> what happens?

Bodträskfors burned area

- Largest wild fire in Sweden in modern time: 1700 ha
- August 2006
- Extreamly dry -> hard fire
- Most of the field layer was destroyed
- Pine dominated
- App. 250 ha will be set aside as a reserve

Questions

- 1) What changes occur in saproxylic assemblages after a large scale forest fire?
- 2) How can conservation oriented measures in forestry be improved to better favour fire adapted beetles?

Dead wood volume

Species richness and abundance

Ff = Fire favoured Sa = Saproxylic species

Aradidae

Species	Burned	Unburned	Mann-Whitney U Test Statistic	Kruskal-Wallis p
Species richness	5	0	36.00	0.002
Abundance				
Aradus betulae*	6	0		
Aradus brevicollis	14	0	36.00	0.002
Aradus cinnamomeus	1	0		
Aradus crenaticollis	3	0		
Aradus lugubris	6	0	30.00	0.021
Total	30	0	36.00	0.002

nMDS beetles 2007

nMDS beetles 2008

Cambium consumers

Strongly fire favoured

Fire favoured

SIMPER 2007

Cambium consumers		Fire favoured	
Tomicus piniperda	B > C	Tomicus piniperda	B > C
Hylobius abietis	B > C	Atomaria pulchra	B > C
Rhagium inquisitor	B > C	Corticaria rubripes	B > C
Hylastes brunneus	B > C	Hylastes brunneus	B > C
Pityogenes bidentatus	na B > C	Phloeonomus lapponicus	B > C

Strongly fire favoured

Hylobius abietis	B > C
Henoticus serratus	B > C
Placusa atrata	B > C
Asenum striatum	B > C
Scolytus ratzeburgi	B < C

Saproxylic

Tomicus piniperda B >	
Hylobius abietis B >	> C
Atomaria pulchra B >	> C
Corticaria rubripes B >	> C
Hylastes brunneus B >	> C

SIMPER 2008

^	1. •		
Cam	hiiim	CONCI	umers
Carr	IDIGIII	COLIS	4111CI 3

Pityogenes bidentatus	B > C
Hylastes brunneus	B > C
Pityogenes chalcographus	B > C
Tomicus piniperda	B > C
Dryocoetes autographus	B > C

Strongly fire favoured

Placusa atrata	B > C
Hylobius abietis	C > B
Acmaeops septentrionis	B > C
Asemum striatum	B > C

Fire favoured

Pityogenes bidentatus	B > C
Enicmus rugosus	C > B
Hylastes brunneus	B > C
Trypodendron lineatum	B > C
Rhizophagus parvulus	B > C

Saproxylic

Pityogenes bidentatus	В	>	C
Trypodendron laeve	В	>	C
Enicmus rugosus	С	>	В
Hylastes brunneus	В	>	C
Trypodendron lineatum	В	>	C

Fire dependent species

2007 Stephanopachys linearis 2008 Sphaeriestes stockmanni

Wildlife, Fish and Environmental studies

Conclusions

- The assemblage composition in a burned area differs from an unburned area
- Mainly because a few species increase in abundance
- Succession of species
- Highly fire favoured species like several *Aradus* species were found in the burned area but in low numbers
- The local species pool important for colonisation

Swedish University of Agricultural Sciences
Wildlife, Fish and Environmental studies

Applications

- Restoration burnings: select sites close to known occurences of target species
- Areas with long history of fire suppression can have less fire dependent species – less effect of burning
- Adapted restoration burning regime to maximise effects

