Effects of intensified forestry on the landscape-scale extinction risk of deadwood dependent species

Jean-Michel Roberge and Thomas Ranius SLU (Swedish University of Agricultural Sciences), Umeå and Uppsala

Intensive forestry and the conservation of forest biodiversity

Binkley CS. 1997. *Preserving nature through intensive plantation management*. Forestry Chronicle 73: 553-558.

Can an intensification of forestry in parts of the landscape be used to facilitate the conservation of biodiversity elsewhere?

Zoning approaches

The TRIAD - Seymour and Hunter (1992)

- 1. Wood production zones (= <u>intensive plantation forestry</u>)
- 2. Ecosystem management zones (= ecological forest management)
- 3. Conservation zones (= set-asides)

Examples of real-world applications:

- Maine, USA
- NW New Brunswick, Can.
- British Columbia, Can. (Kelowna)
- Quebec, Can. (Mauricie)
 - 20% intensive forestry
 - 69% ecosystem management
 - 11% set-asides

Simulation study: General approach

• Model landscape:

- 3600 forest stands of 5 ha
- 40% Norway spruce stands

• Model species:

- 5 virtual insect species
- All dependent on Norway spruce dead wood
 - < 10 years and > 10 cm in diameter
- Metapopulation model (incidence function model) to simulate colonization-extinction dynamics in forest stands
- Response: landscape-scale probability of extinction

Model species

Sensitive species: All 5 model species have a ~50% extinction risk over 250 yrs given the current management regime (95% conventional forestry and 5% set-asides)

Species	u	X	У	1/α	Dead wood exposition
"Normal" (average) sp.	0.53	0.5	96.5	0.5	All
Long-distance disperser	0.51	0.21	850	2	All
Short-distance disperser	0.56	1	6.8	0.1	All
Sun-exposure specialist	0.39	0.5	6.3	0.5	Sun-exposed
Closed forest specialist	0.51	0.5	88	0.5	Shaded

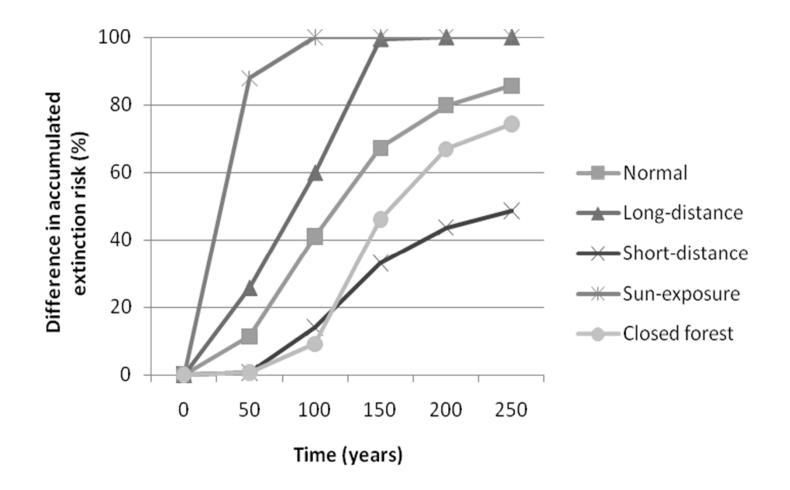
Simulated landscape dynamics

- Start at -100 yrs; 0.95% of the forest harvested every year from 100 yrs ago until today
- Aggregation of unmanaged forest in the landscape
- Three possible types of management from today (year 0) and 250 yrs forward:
 - Free development (= setting aside)
 - Conventional forestry (FSC standards)
 - Intensive plantation forestry (no Norway spruce dead wood)
- Intensive plantation forestry implemented gradually as stands are harvested
- In conventionally managed forest: amount of dead wood predicted as a function of stand age following Ranius *et al.* (2003; Forest Ecol. Manag.)

Three sets of scenarios (from now and 250 yrs into the future)

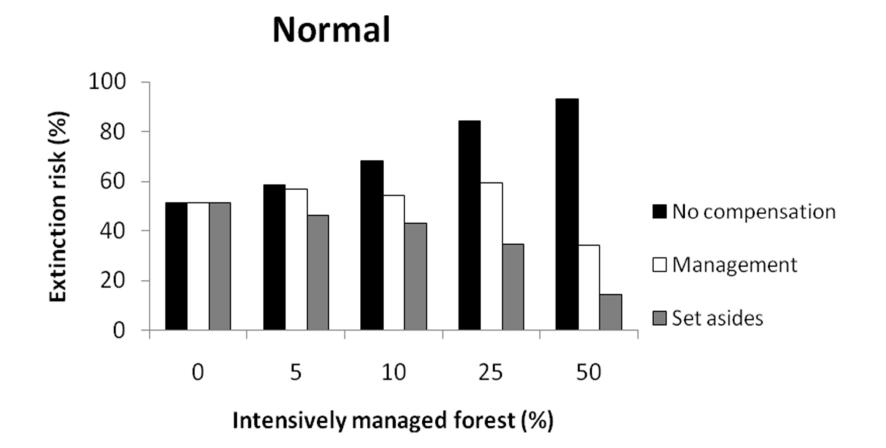
Proportion of intensive plantation forestry varies in all scenario sets from 0 to 50%

Scenario set 1: No compensation for loss of dead wood due to intensive plantation forestry

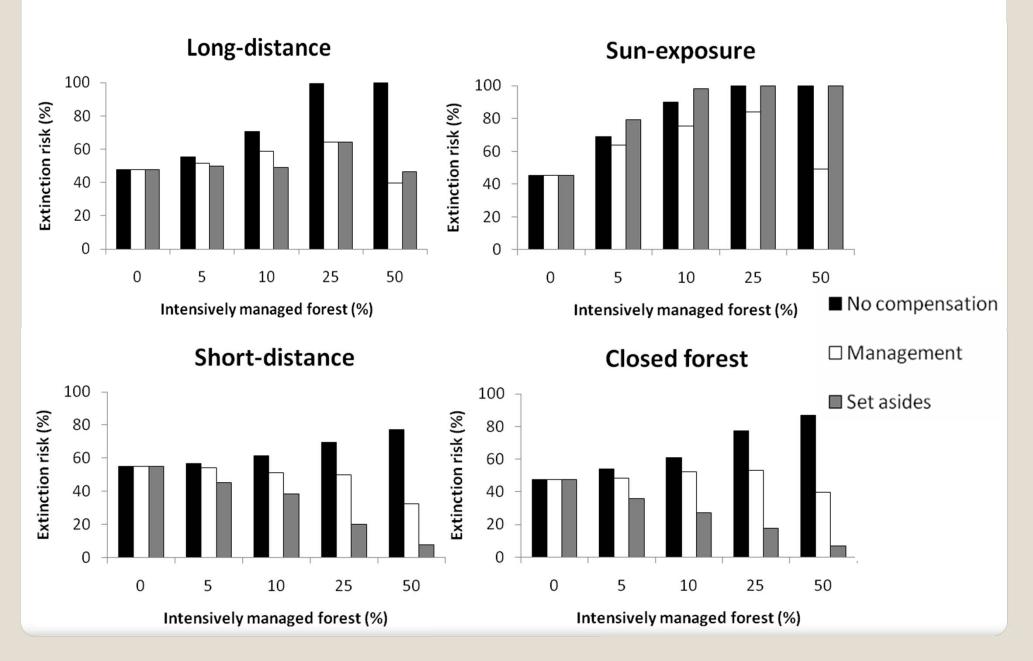

Scenario set 2: Compensation through leaving more dead wood in managed stands

Scenario set 3: Compensation through setting aside more stands for free development

→ Scenario sets 2 & 3: landscape-scale amount of dead wood remains the same no matter proportion of intensive plantation forestry


Results

Effects of 50% intensive plantation forestry; no compensation (scenario set 1)



Results (cont.)

Effect of increasing % of intensive plantation forestry; Normal species, 250 yrs

Results (cont.)

Proportion of	Change in harvestable wood volume (%)					
intensive plantation forestry (%)	No compensation	Compensation through management	Compensation through set- asides			
0	0	0	0			
5	+5	+4.7	+2.9			
10	+10	+9.5	+5.7			
25	+25	+23.7	+14.3			
50	+50	+47.3	+28.6			

Increased % intensive forestry without compensation
 → increased extinction risk for currently sensitive species

- Increased % intensive forestry without compensation
 → increased extinction risk for currently sensitive species
- Effect on landscape-scale extinction takes a very long time to show

- Increased % intensive forestry without compensation
 → increased extinction risk for currently sensitive species
- Effect on landscape-scale extinction takes a very long time to show
- If landscape-scale dead wood amounts are kept constant (compensatory measures), extinction risk decreases with increasing % intensive forestry for most species

- Increased % intensive forestry without compensation
 → increased extinction risk for currently sensitive species
- Effect on landscape-scale extinction takes a very long time to show
- If landscape-scale dead wood amounts are kept constant (compensatory measures), extinction risk decreases with increasing % intensive forestry for most species
- Local decreases in biodiversity in individual stands, but increased landscape-scale biodiversity?

- Increased % intensive forestry without compensation
 → increased extinction risk for currently sensitive species
- Effect on landscape-scale extinction takes a very long time to show
- If landscape-scale dead wood amounts are kept constant (compensatory measures), extinction risk decreases with increasing % intensive forestry for most species
- Local decreases in biodiversity in individual stands, but increased landscape-scale biodiversity?
- However, some species (here the sun exposure specialist) seem not to benefit from compensation through set-asides

Thanks to the MINT-project and the Future Forest program for funding