

International symposium on dynamics and ecological services on deadwood in forest ecosystems May 15 - 19, 2011 Rouyn-Noranda,(QC), Canada

Deadwood diversity and their decay-class dynamics in the northwestern boreal black spruce forests of Quebec

Chafi Chaieb Phd student Supervised by Yves Bergeron and Nicole Fenton UQAM University

Context

In unmanaged boreal forests snags and deadwood are important components of stand structure

Deadwood and snags are significant for biodiversity

Many organisms are often confined to certain qualities of deadwood

Mushrooms

Lichen (Peltigera)

Black-backed Woodpecker

Flying squirrel

White-spotted Sawyer

Objectives

(1) Describe structural attributes of deadwood in mature, overmature and old-growth spruce stands

 (2) Determine the influence of time since fire on the abundance of snags in mature, overmature and oldgrowth spruce forests

(3) Describe the variability of the diameter structure of snags and deadwood and in their degree of decomposition

Methods

Study area

Two forest management units with a total area estimated around15000 km²

FMU 85-51

FMU 87-63

The first cohort begins dying off around 100 years since fire
The third cohort includes all age classes over 200 years
We refer to fire severity as the effects of fire on the organic matter accumulated above the mineral soil

Sampling

129 pure black spruce stands, based on maps derived from forest inventories, were sampled. The number of each type of stands is representative of their occurrences in the area.

% Crown closure (class)	61-8 (B	80)	41- (0	-60 C)	D 25 (D	-40)
Height (m) (class)	12-17 (3)	7-12 (4)	12-17 (3)	7-12 (4)	12-17 (3)	7-12 (4)
Nclass	25	14	40	15	22	13
Nclass /Ntot=129	19	11	31	12	17	10
% surface area class/ total surface area	19	13	28	16	16	8

Variables

Structural attributes	Independent variables
- $LTBA = Live tree basal area (m2/ha)$	- COHORTS = Age classes
	(Cohort1, Cohort2, Cohort3)
- SNAG = SNAG abundance (SNAGS/ha)	- <i>FIRE SEVERITY</i> = (FIS severe;
 - CWD = Coarse woody debris abundance (CWD/ha) 	FIPS low severity)
	- OM = Organic matter thickness
 CWDV = Coarse woody debris volume (CWDV/ha) 	(0-30 cm, 30-60 cm, 60-100 cm and more)
	- SOIL TEXTURE = Clay vs Organic
 CANOPY = Canopy closure classes 	
(CANB, CANC, CAND)	- SLOPE = Slope classes (A, B, C)
- STRUCTURE = Age structure (Even, Uneven)	- VP = Van post classes of organic matter decomposition (VP2, VP4)
- HEIGHT = Height classes (3, 4)	

RESULTS

Redundancy Analysis allows studying the relationship between the two tables of variables (*Structural attributes and independent variables*)

Eigenvalues, contribution to the variance

	RDA1	RDA2	
Eig.value	423.001	0.2111	
Accounted	0.325	0.3252	

	RDA1
Clay	0.089023
Organic	-0.084007
TSF	11.492636
OM30	0.081126
ОМб0	0.003378
OM100	-0.084503
VP2	0.066564
VP4	-0.050349
FIS	0.091938
FIPS	-0.091938

Influence of some environmental variables on SNAG abundance

Abundance of snags

Analysis using generalized linear models (GLM'S)

GLMs with model selection

I proceeded with negative binomial distribution GLMs with model selection

I set 15 candidate models

And the best model that explains the variability of snag abundance includes both TSF (cohorts) and fire severity Snag abundance vs Cohorts

Snag abundance vs Slope classes

Snag density is significantly higher in stands of the second cohort Snag abundance is significantly higher on well-drained boreal black spruce sites than on poorly drained sites

Multinomial analysis : Influence of time since last fire on snag abundance

Predicted probability of snag abundance for each cohort

It is more likely to have a low density of snags in first cohort stands It is more likely to have a high density of snags in second cohort stands

Deadwood diversity and their decay-class dynamics

Snag diameter structural diversity and their decay-class dynamics

Snags in second cohort stands peak in diameter structural diversity on both organic and mineral sites.

The paludified old-growth stands have a greater diameter structural diversity of snags.

Snags in old-growth stands have the most diversified decay classes

Deadwood diversity and their decay-class dynamics

Deadwood in second cohort stands have diversified diameter classes on both organic and clay sites

However oldest stands on clay have the most diversified deadwood diameter classes

Deadwood in stands of the second cohort have the most diversified decay classes

Conclusion

Time since last fire (TSF) and stand origin were the two variables that best explained the variability in the abundance of snags

Overmature stands were also significantly richer in deadwood then the youngest and the oldest stands

They had the most diverse snags and deadwood diameter structure and the most diverse decay classes

Unmanaged overmature forests must be preserved to ensure better availability of deadwood in the landscape

Acknowledgements

I'd like to acknowledge the people who helped me. Many thanks to Louis Dumas who spent long hours looking at maps and to Nicole Fenton who reviewed this presentation

Funding was provided by :

THANK YOU